摘要: 本文讨论一类非线性分数阶微分方程积分边值问题正解的存在性.借助于Green函数有关的不等式,通过Kr asnoselskii-Zabreiko不动点定理获得该问题正解的存在性结果,并在非线性项无穷远处次线性增长的情况下给出解的迭代序列.
说明:如本页面涉及到版权问题或作者不愿意公开,请联系本站管理员删除!
[1] | 龙玉华 范瑶颖 . 二阶非线性差分方程边值问题的多解性与变号解 [J]. 应用数学 ,2018,3 |
[2] | 贠晓菊 王战平 . 污染环境中具有年龄结构的非线性时变种群扩散系统的最优控制 [J]. 应用数学 ,2018,3 |
[3] | 史艳华 王芬玲 赵艳敏 . 非线性Benjamin-Bona-Mahony方程一个新的低阶混合元方法 [J]. 应用数学 ,2018,3 |
[4] | 冯依虎 陈贤峰 莫嘉琪 . 一类广义非线性反应扩散方程奇摄动问题激波解 [J]. 应用数学 ,2017,1 |
[5] | 刘喜兰 王慧娟 陈玲 . 带积分边值条件的非线性梁方程解的唯一性 [J]. 应用数学 ,2017,3 |
[6] | 李蕊 郭建平 . 东北春玉米非线性积温模型参数改进 [J]. 应用气象学报 ,2018,2 |
[7] | 杜骞 夏修身 孙学先 . 大跨度钢管混凝土拱桥非线性抗震性能研究 [J]. 地震工程学报 ,2018,2 |
[8] | 王玉石 李小军 兰日清 王宁 陈红娟 . 强震动作用下土体非线性动力特征研究发展与展望 [J]. 震灾防御技术 ,2016,3 |