东北黑土区侵蚀沟遥感影像特征提取与识别

       摘要: 东北黑土区是中国重要的粮食生产区,而长期的开垦造成了严重的水土流失现象,坡耕地表面出现大量的侵蚀沟.侵蚀沟的识别是土壤侵蚀监测的重要手段之一,目前遥感技术在侵蚀沟的识别中应用广泛,但自动化程度不高.针对特定地物影像的识别,如何选取最能够有效描述该地物的特征是解决问题的关键.本文构建了耕地和侵蚀沟遥感影像的训练样本集,基于样本集分别提取了由光谱特征和纹理特征组成的浅层特征、SIFT特征经编码后得到的中层特征,以及利用卷积神经网络提取的深层特征;再基于不同层次的特征选用合适的分类器对遥感影像进行分类,识别出含有侵蚀沟的遥感影像,形成了一套针对侵蚀沟的特征提取与识别方法,为东北黑土区的耕地保护提供有力支持.测试结果表明:基于中层特征的识别精度最高,为98.5%,但该特征需要人工设计,自动化程度有限;而利用卷积神经网络可自动提取深层特征,其识别精度达到了95.5%,同时大大提高了自动化程度,满足侵蚀沟影像的识别的需求.

作者:
于佩鑫 周询 刘素红 王西凯
单位:
北京师范大学地理学院,北京,100875 北京师范大学地理科学学部,北京,100875
出处:
《遥感学报》
刊期:
2018年第22卷第4期
基金:
国家自然科学基金(41171262) 水利部公益性行业科研专项(201501012)

东北黑土区侵蚀沟遥感影像特征提取与识别

摘要:东北黑土区是中国重要的粮食生产区,而长期的开垦造成了严重的水土流失现象,坡耕地表面出现大量的侵蚀沟.侵蚀沟的识别是土壤侵蚀监测的重要手段之一,目前遥感技术在侵蚀沟的识别中应用广泛,但自动化程度不高.针对特定地物影像的识别,如何选取最能够有效描述该地物的特征是解决问题的关键.本文构建了耕地和侵蚀沟遥感影像的训练样本集,基于样本集分别提取了由光谱特征和纹理特征组成的浅层特征、SIFT特征经编码后得到的中层特征,以及利用卷积神经网络提取的深层特征;再基于不同层次的特征选用合适的分类器对遥感影像进行分类,识别出含有侵蚀沟的遥感影像,形成了一套针对侵蚀沟的特征提取与识别方法,为东北黑土区的耕地保护提供有力支持.测试结果表明:基于中层特征的识别精度最高,为98.5%,但该特征需要人工设计,自动化程度有限;而利用卷积神经网络可自动提取深层特征,其识别精度达到了95.5%,同时大大提高了自动化程度,满足侵蚀沟影像的识别的需求.

说明:如本页面涉及到版权问题或作者不愿意公开,请联系本站管理员删除!

0.196541s