摘要: 在喀斯特分布区,基岩、植被、裸地等多种地表覆盖交错分布,地物覆盖高度异质,并且呈现出短周期规律性变化和长期动态趋势变化,单一时相的影像进行土地覆盖分类精度非常有限.针对这一问题,本文提出一种顾及物候特征的多时相遥感影像分类策略,利用具有高时间分辨率的MODIS NDVI时间序列产品作为数据源,选择BFAST(Breaks For Additive Seasonal and Trend)方法进行NDVI时间序列的物候分解,采用动态阈值法对时序分解的物候轨迹进行标记,最后将物候标记特征与原始光谱时序综合特征进行组合,选择支持向量机(SVM)分类器进行土地利用覆盖分类,并且对比了不同特征空间下的分类结果.以云南省壮族苗族自治州丘北县和砚山县为研究区进行分类实验,结果表明,BFAST模型可以有效地分解出NDVI时序中的关键物候特征,相比基于单纯光谱特征的分类,物候驱动的喀斯特断陷盆地区土地覆盖分类精度有明显的提升,在NDVI、光谱和物候组合特征空间下,土地覆盖分类精度最高,总体精度和Kappa系数分别为88.94%和0.8693,尤其在灌木林、有林地、石旮旯地与稀疏植被的区分中,SOS、POS和GSG等物候特征具有较强的可分性,表明物候特征在地物识别中的有效性.
摘要:在喀斯特分布区,基岩、植被、裸地等多种地表覆盖交错分布,地物覆盖高度异质,并且呈现出短周期规律性变化和长期动态趋势变化,单一时相的影像进行土地覆盖分类精度非常有限.针对这一问题,本文提出一种顾及物候特征的多时相遥感影像分类策略,利用具有高时间分辨率的MODIS NDVI时间序列产品作为数据源,选择BFAST(Breaks For Additive Seasonal and Trend)方法进行NDVI时间序列的物候分解,采用动态阈值法对时序分解的物候轨迹进行标记,最后将物候标记特征与原始光谱时序综合特征进行组合,选择支持向量机(SVM)分类器进行土地利用覆盖分类,并且对比了不同特征空间下的分类结果.以云南省壮族苗族自治州丘北县和砚山县为研究区进行分类实验,结果表明,BFAST模型可以有效地分解出NDVI时序中的关键物候特征,相比基于单纯光谱特征的分类,物候驱动的喀斯特断陷盆地区土地覆盖分类精度有明显的提升,在NDVI、光谱和物候组合特征空间下,土地覆盖分类精度最高,总体精度和Kappa系数分别为88.94%和0.8693,尤其在灌木林、有林地、石旮旯地与稀疏植被的区分中,SOS、POS和GSG等物候特征具有较强的可分性,表明物候特征在地物识别中的有效性.
说明:如本页面涉及到版权问题或作者不愿意公开,请联系本站管理员删除!
学术期刊网 | 中文学术期刊在线检索服务平台 |蜀ICP备18028976号
首页 | 关于我们 | 加入我们 | 常见问题 | 投诉建议 | 网站地图
邮箱:qikanjiansuo@163.com | 在线客服