弹丸消融速率的理论模型及数值计算

       摘要: 建立了计算托卡马克加料中弹丸消融的物理模型,结合1维输运模型编制了1.5维弹丸消融计算机模拟代码。使用ITER-FEAT的相关参数,对半径为6mm,初速度为2000m·s?1,从低磁场侧注入弹丸的消融速率进行了模拟计算。结果显示,弹丸消融速率先随注入深度而逐渐增大,最大消融速率约6×1026s?1,然后由于弹丸半径的减小,消融速率迅速减小,穿透深度约0.45m。这一结果与中性气体屏蔽模型(NGS)的结果一致,证明计算代码正确有效。同时,从计算结果反映出,对ITER这样的堆级托卡马克,采用常规弹丸注入方式,尽管速度高达2000m·s?1,穿透深度也远未达到等离子体中心,因此应采取其他有效措施来提高等离子体加料效率。

作者:
程发银
单位:
重庆工商大学应用物理系,重庆,400067
出处:
《核聚变与等离子体物理》
刊期:
2016年第36卷第1期
基金:
重庆市教委科技项目

弹丸消融速率的理论模型及数值计算

摘要:建立了计算托卡马克加料中弹丸消融的物理模型,结合1维输运模型编制了1.5维弹丸消融计算机模拟代码。使用ITER-FEAT的相关参数,对半径为6mm,初速度为2000m·s?1,从低磁场侧注入弹丸的消融速率进行了模拟计算。结果显示,弹丸消融速率先随注入深度而逐渐增大,最大消融速率约6×1026s?1,然后由于弹丸半径的减小,消融速率迅速减小,穿透深度约0.45m。这一结果与中性气体屏蔽模型(NGS)的结果一致,证明计算代码正确有效。同时,从计算结果反映出,对ITER这样的堆级托卡马克,采用常规弹丸注入方式,尽管速度高达2000m·s?1,穿透深度也远未达到等离子体中心,因此应采取其他有效措施来提高等离子体加料效率。

说明:如本页面涉及到版权问题或作者不愿意公开,请联系本站管理员删除!

0.346843s