摘要: Landsat热红外系列数据一直是地表温度反演重要的遥感数据源,目前用于地表温度反演的单窗算法主要针对Landsat TM/ETM+第6波段数据(TM 6)建立的,Landsat 8热红外传感器(TIRS)与TM 6相比有很多变化,因而其单窗算法也需要改进.本文以Landsat 8 TIRS第10波段(TIRS 10)为数据源,提出了针对TIRS 10的单窗算法(TIRS10_SC),并对研究区地表温度进行反演研究,确定了研究区不同类型地表的温度值.研究结果表明:(1) TIRS10_SC算法可以较好地应用于Landsat 8数据的地表温度反演,平均反演误差为0.83℃,相关系数为0.805,反演温度与模拟数据和实测数据都具有较好的一致性;(2)通过对单窗算法中的地表发射率、大气水汽含量和大气平均作用温度等参数敏感性分析发现,TIRS10 SC算法能够获得较为可靠的反演结果;同时,TIRS10 SC算法对大气水汽含量和地表发射率敏感性较高,对大气平均作用温度敏感性稍弱.该算法对于利用Landsat 8 TIRS数据快速反演地表温度具有应用价值.
摘要:Landsat热红外系列数据一直是地表温度反演重要的遥感数据源,目前用于地表温度反演的单窗算法主要针对Landsat TM/ETM+第6波段数据(TM 6)建立的,Landsat 8热红外传感器(TIRS)与TM 6相比有很多变化,因而其单窗算法也需要改进.本文以Landsat 8 TIRS第10波段(TIRS 10)为数据源,提出了针对TIRS 10的单窗算法(TIRS10_SC),并对研究区地表温度进行反演研究,确定了研究区不同类型地表的温度值.研究结果表明:(1) TIRS10_SC算法可以较好地应用于Landsat 8数据的地表温度反演,平均反演误差为0.83℃,相关系数为0.805,反演温度与模拟数据和实测数据都具有较好的一致性;(2)通过对单窗算法中的地表发射率、大气水汽含量和大气平均作用温度等参数敏感性分析发现,TIRS10 SC算法能够获得较为可靠的反演结果;同时,TIRS10 SC算法对大气水汽含量和地表发射率敏感性较高,对大气平均作用温度敏感性稍弱.该算法对于利用Landsat 8 TIRS数据快速反演地表温度具有应用价值.
说明:如本页面涉及到版权问题或作者不愿意公开,请联系本站管理员删除!
学术期刊网 | 中文学术期刊在线检索服务平台 |蜀ICP备18028976号
首页 | 关于我们 | 加入我们 | 常见问题 | 投诉建议 | 网站地图
邮箱:qikanjiansuo@163.com | 在线客服