采用目标端元修正的高光谱混合像元盲分解

       摘要: 针对非负矩阵盲信号分离(NMF)用于混合像元分解易陷入局部极小值的不足,将非监督端元提取与盲分解方法相结合,构建了一种基于目标端元修正的混合像元盲分解模型(ATGP-NMF).ATGP-NMF模型利用非监督正交子空间投影算法(ATGP)和非负最小二乘法(NNLS)获取NMF盲分离的初始值,然后将获得初始目标端元光谱与丰度输入NMF模型,通过迭代运算不断逼近优化目标而得到最终的端元光谱和端元丰度.为了检验模型对于各类数据的有效性和适用性,将ATGP-NMF与传统NMF分别应用于模拟仿真数据、室内控制数据和真实遥感影像3类实验数据进行分析验证.结果表明,ATGP-NMF模型具有较好的适用性,在没有先验信息、先验信息很少,以及纯像元假设不存在情况下都能较好地分解混合像元,且能够更好克服局部极小问题,提高混合像元分解的精度.

作者:
卓莉 曹晶晶 王芳 陶海燕 郑璟
单位:
中山大学地理科学与规划学院,广东省城市化与地理环境空间模拟重点实验室,综合地理信息研究中心,广东广州510275 广州大学地理科学学院,广东广州,510006 广东省气候中心,广东广州,510080
出处:
《遥感学报》
刊期:
2015年第19卷第2期
基金:
国家自然科学基金 广东省自然科学基金 中山大学柳林教授千人计划科研启动项目

采用目标端元修正的高光谱混合像元盲分解

摘要: 针对非负矩阵盲信号分离(NMF)用于混合像元分解易陷入局部极小值的不足,将非监督端元提取与盲分解方法相结合,构建了一种基于目标端元修正的混合像元盲分解模型(ATGP-NMF).ATGP-NMF模型利用非监督正交子空间投影算法(ATGP)和非负最小二乘法(NNLS)获取NMF盲分离的初始值,然后将获得初始目标端元光谱与丰度输入NMF模型,通过迭代运算不断逼近优化目标而得到最终的端元光谱和端元丰度.为了检验模型对于各类数据的有效性和适用性,将ATGP-NMF与传统NMF分别应用于模拟仿真数据、室内控制数据和真实遥感影像3类实验数据进行分析验证.结果表明,ATGP-NMF模型具有较好的适用性,在没有先验信息、先验信息很少,以及纯像元假设不存在情况下都能较好地分解混合像元,且能够更好克服局部极小问题,提高混合像元分解的精度.

说明:如本页面涉及到版权问题或作者不愿意公开,请联系本站管理员删除!

0.824666s